选择语言:
News 产业资讯

未来芯片技术发展态势分析

日期: 2020/5/18 9:39:44
浏览次数: 14

半导体集成电路是现代信息产业的基石,但主导其发展的摩尔定律正遭遇物理学和经济学双重限制,致使传统的硅基电子技术临近发展极限,亟需采用新型芯片技术推动未来信息产业持续蓬勃发展。各国政企积极布局了一系列未来芯片技术,抢占国际半导体技术战略制高点。本文梳理了一批主要未来芯片技术,剖析了这些芯片技术的当前发展现状、所处的成熟度阶段和市场应用前景。最后,对我国未来芯片技术的发展提出了建议,以期为我国相关研究工作提供参考。具体建议包括制定未来芯片技术发展规划,打破国外垄断格局;梯次推进未来芯片技术发展,平衡新技术发展面临的机遇与风险;重点推动存内计算技术研发和商业化,缓解我国芯片技术卡脖子问题。


信息化、数字化、网络化、智能化是引领当前科技、产业乃至社会变革的时代大潮,半导体产业是顺应这一时代潮流的根基性、战略性和先导性产业,是衡量一个国家科技发展水平乃至综合国力的重要指标。从1985年的日美《广场协议》到中兴事件、华为实体名单,再到日本将韩国移出贸易优惠“白名单”,半导体一直是大国之间贸易战、科技战和经济战的主战场,芯片技术则是各方激烈争夺的战场制高点。当前,主导芯片产业发展的摩尔定律正遭遇物理学和经济学双重极限,一批未来芯片技术被寄予厚望,各国政企纷纷布局,有望给多年来固化的国际半导体竞争格局带来变数。在此背景下,本文对全球未来芯片技术发展态势进行了剖析和讨论,并对我国未来芯片发展提出了建议。


1、未来芯片技术发展现状

目前,原子尺度硅材料的基本物理限制使得由摩尔定律驱动的硅技术演进路径似乎正快速接近终点。随着摩尔定律走向终结,人工智能、物联网、超级计算及其相关应用却提出了更高的性能要求,半导体产业步入亟需转变突破发展的关键点,芯片架构、材料、集成、工艺和安全方面的创新研究成为新的突破方向。

 

1.1 新型晶体管技术

1.1.1 新架构晶体管技术

鳍式场效应晶体管(Fin Field-effect transistor,FinFET)是当前主流半导体制造工艺采用的晶体管架构,成功地推动了从22纳米到7纳米等数代半导体工艺的发展,并将拓展到5纳米和4纳米工艺节点。全环栅晶体管(Gate-All-Around field-effect transistors,GAAFET)是一种继续延续现有半导体技术路线寿命的较主流技术,可进一步增强栅极控制能力,克服当前技术的物理缩放比例和性能限制。从3纳米开始,韩国三星电子将放弃FinFET架构转向GAAFET架构,计划在2020年底进行3纳米GAAFET产品风险试生产,2021年底进行批量生产。3纳米以下晶体管潜在技术包括互补场效应晶体管(Complementary Field-Effect Transistors,CFET)、垂直纳米线晶体管、负电容场效应晶体管(Negative Capacitance Field-Effect Transistors,NC-FET)、隧穿场效应晶体管(Tunnel Field-Effect Transistor,TFET)等。


1.1.2 新材料晶体管技术

研究硅基材料的替代材料,开发新型电子器件是解决当前芯片发展瓶颈的另一种解决方法。当前,替代性半导体材料主要包括第三代半导体材料、碳基纳米材料、二维半导体材料等。

第三代半导体材料包括碳化硅、氮化镓、氧化锌、金刚石、氮化铝、氧化镓等为代表的宽禁带半导体材料,可实现高压、高温、高频、高抗辐射能力,被业内誉为固态光源、电力电子、微波射频器件的“核芯”及光电子和微电子产业的“新发动机”。目前,碳化硅晶体管和氮化镓晶体管的研发相对较为成熟,推动着5G通信技术、新能源汽车、光电器件等市场快速增长,其他第三代半导体材料尚属于初级研究阶段。德国英飞凌公司已开发出系列碳化硅金属-氧化物半导体场效应晶体管和分立器件。美国Cree公司于2019年宣布投资10亿美元打造碳化硅超级制造工厂,将碳化硅晶圆制造能力提高30倍,以满足2024年的预期市场增长。宜普电源转换公司早在2009年就推出第一款商用增强型氮化镓晶体管,目前面向无线电源传送、全自动汽车、高速移动通信、低成本卫星、医疗护理等应用提供100多种氮化镓产品。日本AGC公司已联合Novel Crystal Technology公司开发氧化镓晶片。

石墨烯和碳纳米管是有望取代硅延续摩尔定律的碳基纳米材料。石墨烯具有非常优异的电学、力学、光学和热学等特性,可通过微纳加工工艺实现各种类型和功能的器件,现已开发出基于石墨烯的晶体管、二极管、存储器、集成电路、电池、超级电容器、热电器件、太阳能电池、光电探测器、传感器等电子和光电子器件。中国科学院金属研究所于2019年10月制备出“硅-石墨烯-锗晶体管”,大幅缩短延迟时间,并将截止频率由兆赫兹提升至吉赫兹。近年来,基于碳纳米管的碳基电子学研究也取得了飞速发展,并逐渐从基础研究转向实际应用。美国MIT于2019年开发出迄今为止用碳纳米管制造的最大计算机芯片,一颗由1.4万余个碳纳米管晶体管(Carbon Nanotube Field-Effect Transistors,CNFET)组成的16位微处理器,证明可以完全由CNFET打造超越硅的微处理器。

高质量的二维材料是潜在的下一代替代材料,但距离传统半导体产业至少还有十年的时间。除石墨烯外,较有希望的二维材料包括二硒化钨和二硫化钼等过渡金属二卤化物,但仍处于初级研究阶段。

 

1.2 新型存储器芯片技术

当前,静态存储器(Static Random-Access Memory,SRAM)、动态存储器(Dynamic Random-Access Memory,DRAM)、闪存等主流存储器面临着难以逾越的固有技术局限和工艺挑战。以相变存储器(Phase-Change Memory,PCM或PCRAM)、磁性存储器(Magnetoresistive Random Access Memory,MRAM)、阻性存储器(Resistive Random Access Memory,ReRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、碳纳米管存储器(Nanotube Random Access Memory,NRAM)为代表的新型存储器能够带来独特的性能优势,但均采用新材料制造且工艺严苛,大规模量产仍需一定的时间。其中,PCM、MRAM、ReRAM是普遍认为最有前途的新型非易失性存储器。PCM具有成本低和3D可伸缩性等特性,有望取代部分基于DRAM的高端固态硬盘;MRAM具有读写速度快、功耗低、成本低等特性,正在成为物联网设备存储器的领先候选者;ReRAM具有读写速度快和功耗低等显著的性能优势,有望带来高密度和低成本存储应用。据美国数据存储分析公司Coughlin Associates报告显示,MRAM和自旋转移转矩磁性存储器(Spin-Torque Transfer Magnetoresistive Random Access Memory,STT-MRAM)将在未来几年内取代或非门闪存;ReRAM是闪存的潜在替代品,但至少仍需十年时间才能完全实现。

 

1.3 新架构芯片技术

1)存内计算芯片

存内计算是由一系列迅速融合的软件技术和硬件架构进步实现的,突破了传统存储与计算分离架构对运算能力的限制,在性能、可扩展性和分析复杂性方面有了显著的改进,主要用于数据密集型计算的处理。人工智能和新型存储器是推动存内计算发展的主要需求,因此预计存内计算芯片将出现两种形态,一种为带有计算功能的存储器模块,另一种为基于存内计算的人工智能加速芯片。美国密歇根大学开发了全球首个基于忆阻器阵列的存算一体通用人工智能芯片,可快速、低能耗地执行多种人工智能算法。合肥恒烁半导体科技公司与中国科大团队合作研发的我国首款超低功耗存算一体人工智能芯片系统演示顺利完成,具有边缘计算和推理能力。

2)深度神经网络专用芯片

深度神经网络是识别和归类声音、图像、文本等数据的统计模型,目前大多数神经网络的训练和推理任务由图形处理器(Graphics Processing Unit,GPU)完成。在加速神经网络运算时,深度神经网络专用芯片具有比中央处理器(Central Processing Unit,CPU)和GPU更高的性能和更低的功耗。谷歌大规模部署了基于深度神经网络的张量处理器(Tensor Processing Unit,TPU)芯片,英特尔、亚马逊、华为、阿里等巨头也分别研制了自己的神经网络芯片,寒武纪、Graphcore等新创公司开发的深度神经网络专用芯片受到了欢迎。

3)神经形态芯片

神经形态计算是一种通过构建类似动物大脑结构的计算架构以实现能够模拟神经生物过程的智能系统的新型计算模式,它能极大提升计算系统的感知与自主学习能力,可以应对当前十分严峻的能耗问题,并有望颠覆现有的数字技术。尽管美国与欧盟等国家对神经形态计算都投入了大量研发资源,麻省理工学院、普渡大学、斯坦福、IBM、惠普等大学和公司开展了众多探索性研究工作,但神经形态芯片仍处于非常早期的原型阶段。英特尔推出一款名为“Pohoiki Beach”的新型神经形态芯片,内含800万神经元,速度比现有的CPU快近千倍,效率高近万倍,而耗电量仅为百分之一,所用架构为进一步扩展神经元数量奠定了基础。清华大学开发出全球首款异构融合类脑计算芯片——“天机芯”,由多个高度可重构的功能性核组成,可同时支持机器学习算法和类脑计算算法,已成功在无人驾驶自行车上进行了实验。

4)量子计算芯片

作为一种借助量子力学理论改进的计算模型,量子计算可超越经典计算机实现指数级的计算速度。近20多年来,量子计算取得了诸多突破性进展,但量子计算系统仍须在规模化、噪声、互联方面获取重大突破才能提供商业价值。量子计算芯片已获得了大量资金的支持,诸多大学和企业实验室都在开展研究。半导体量子芯片完全基于传统半导体工艺,更容易达到要求的量子比特数目,只要科学家能在实验室里实现样品芯片,其大规模工业生产理论上讲就不存在问题,这是它大大超越其它量子计算方案的优势所在。Intel公司在量子计算机研制方面就选择了硅量子点技术,于2018年研制出首台采用传统计算机硅芯片制造技术的量子计算机。澳大利亚新南威尔士大学开发出了全球首款3D原子级硅量子芯片架构,朝着大规模量子计算机迈出了重要一步。目前,中国本源量子公司已与中国科学技术大学合作研发出第一代半导体二比特量子芯片—玄微。

5)光电集成芯片

光电集成芯片是指利用光子与微电子技术将光子元件和电子元件集成在一起的集成电路,具有高传输带宽、快传输处理速度、高集成度和低成本等优点。在美国、欧盟、英国、日本等国家一系列战略布局的推动下,光电集成芯片取得了一定的重要研究进展,但此芯片技术研究仍处于起步阶段。荷兰研究人员开发出快速且高能效光子存储器,有望彻底变革未来光子集成电路的数据存储过程。日本电信电话公司在处理器中引入光网络技术,开发出集成纳米光子学技术的芯片,实现了超小型光电变换元件。

此外,随着Intel芯片、ARM芯片和AMD芯片安全漏洞的持续暴露,芯片设计漏洞检测成为了未来芯片技术发展的重点考虑因素之一。2019年,美国斯坦福大学开发出两种人工智能算法,能够更快地检测芯片前端和后端设计漏洞,缩减芯片验证周期;密歇根大学研究人员设计出一种新的处理器架构,所开发的“MORPHEUS”芯片可每秒20次加密和随机重编关键数据比特,远快于人类黑客和电子黑客技术的反应速度,进而主动抵御未来威胁。


2、未来芯片技术成熟度

美国高德纳咨询(Gartner)公司提出的技术成熟度曲线(The Hype Cycle)是对各种新技术的一般发展模式的图形描述,是一种评估技术当前发展现状和未来潜力的工具。横轴表示一项技术从原型概念到成熟随时间发展依次经历的五个阶段,依次为萌芽期、过热期、幻想破灭期、复苏期和成熟期;纵轴表示大众对技术未来市场价值的期望值,距主流应用所需时间表示技术的未来发展速度。

本文基于Gartner公司的技术成熟度曲线工具包,遴选出了潜在17项未来芯片技术,剖析了未来芯片技术的成熟度,如图1所示(需要说明的是,Gartner技术成熟度曲线工具包不含石墨烯芯片、碳纳米管芯片、量子计算芯片技术,故本文采用范围更广泛的量子计算、石墨烯、碳纳米管技术来反映这三大未来芯片技术的成熟度)。

未来芯片技术发展态势分析

正处于萌芽期的技术包括氧化镓晶体管、神经形态硬件、下一代晶体管(如纳米线场效应晶体管、碳纳米管晶体管、2D单分子膜晶体管等),业界对这三大技术的期望值越来越高,但用户的需求和产品并不成熟,这些技术至少还需要5年或10年以上才有望带来主流应用。

大量未来芯片技术正处于过热期,包括阻性存储器、深度神经网络专用芯片、量子计算、硅基氮化镓晶体管、石墨烯、碳纳米管、碳化硅晶体管、碳纳米管存储器,这些技术获得了媒体和风险投资的广泛关注,并在少量关键用户中投入初期应用。除量子计算需要10年以上才能成为主流应用外,处于过热期的其他未来芯片技术普遍有望在5-10年带来主流应用,深度神经网络专用芯片只需要2~5年。

由于当前产品的成熟度难以满足过高的期望,自旋转移转矩磁性存储器、芯片互联中的硅光子技术、相变存储器正处于幻想破灭期,人们对这些技术的关注度正快速降低,同时出现大量负面评价。技术供应商正在改进相关产品,推动这些技术和产品达到市场预期。自旋转移转矩磁性存储器和相变存储器有望在2~5年内成为主流应用,芯片互联中的硅光子技术则需要5~10年。

存内计算正处于复苏期,相关产品愈发成熟,有望在2~5年内成为主流应用。


3、未来芯片技术的市场前景

为剖析未来芯片技术的市场应用前景,本文基于Gartner技术成熟度曲线工具包从市场渗透率和潜在效益等级角度对这些技术进行了归类,如表1所示。未来芯片技术的潜在效益包括“变革性”“高”“中”三个等级,市场渗透率以当前技术市场占预期目标市场的百分数表示。其中,“变革性”表示所属技术将开创新的业务方式,导致行业发生重大转变;“高”表示所属技术将推动现有行业横向和纵向拓展,大幅提升企业收益或节约成本;“中”表示所属技术将逐步改进现有行业,帮助企业提升收益或节约成本。

未来芯片技术发展态势分析

可见,碳纳米管和神经形态硬件是潜在市场效益最高、市场渗透率却最低的未来芯片技术,技术研发和产业化风险最高,适合以科研机构为主开展尝试性前沿探索研究;相变存储器和自旋转移转矩磁性存储器是当前市场渗透率处于中等级别的未来芯片技术,技术研发和产业化风险相对较低,未来可依潜在市场效益级别确定研发布局力度;存内计算是潜在市场效益和市场渗透率均最高的未来芯片技术,目前处于早期主流应用阶段,技术研发和产业化风险最低,值得大力布局技术和产业化研究。


4、启示与建议

芯片是数字经济的重要根基,半导体芯片技术的竞争不仅仅是科技或产业的竞争,还直接影响着各国在政治、经济、国家安全等领域的话语权。基于未来芯片技术发展态势的分析,本文为我国在相关领域的工作提出以下建议。

1)制定未来芯片技术发展规划,打破国外垄断格局

当前,美国、日本、韩国、欧洲等国家和地区基本上垄断了芯片产业链的高价值环节,建立了较难逾越的技术生态体系和知识产权壁垒。我国难以在短时间内实现传统高端通用芯片的国产化替代,仍需长期的技术攻关和高昂的研发投入。在未来芯片的赛道上一些国家已提前部署,但还没有国家真正建立领先优势,我国应在“十四五”时期积极制定未来芯片技术发展规划,全面加强核心技术攻关,加速推动即将步入成熟期技术的商业化,力争在未来芯片技术自主可控方面实现历史性突破。

2)梯次推进未来芯片技术发展,平衡机遇与风险

当今世界正经历百年未有之大变局,新一轮科技革命和产业革命加速演进,准确认识并驾驭不确定性是一项孕育着巨大机遇的严峻挑战。我国应综合评估未来芯片技术的当前成熟度阶段、未来发展趋势、市场效益潜质、国际竞争格局和我国研究基础,把握未来芯片市场航向,通过设立重大专项、开展重点前沿研究和尝试性前沿探索、成立产学研联盟、鼓励/扶持初创企业等发展策略,分层推进各项未来芯片技术梯次发展,指导相关技术研发资金投入、研究力量构建、商业化运作中的资本运营等行动,加快构建未来芯片技术梯次发展格局。

3)重点推动存内计算技术研发和商业化,缓解卡脖子

随着摩尔定律日趋终结,处理器和存储器分离带来的数据传输延迟和损耗成为限制芯片性能的主要瓶颈,存内计算技术是进一步大幅提升芯片性能并降低功耗的解决方案。当前,存内计算技术即将进入成熟期,市场渗透率高达20%~50%,未来潜在市场效益级别最高,属于高回报低风险的未来芯片技术。我国相关企业与研究机构应充分把握此机遇,全面谋划存内计算技术研发和商业化发展,联合开发存内计算所需软硬件技术,力争取得一批关键核心技术突破,掌握一批自主知识产权,力争未来产业主导权。

 

文章来源:世界科技研究与发展、战略技术前沿

版权归原作者所有,如涉及版权问题,请联系删除


  • 相关阅读: / News More
  • 点击次数: 12
    2020 - 07 - 15
    JEDEC固态技术协会今天将发布其下一个主流存储器标准DDR5 SDRAM的最终规范,这将标志着计算机存储器开发的一个重要里程碑。自90年代末以来,DDR的最新版本一直在驱动PC,服务器以及所有产品之间的发展,DDR5再次扩展了DDR内存的功能,使峰值内存速度提高了一倍,同时也大大增加了内存大小。预计到2021年,基于新标准的硬件将在服务器级别开始采用,然后再推广到客户端PC和其他设备。DDR5规范最初计划于2018年发布,今天的发布相对于JEDEC的原定计划有些落后,但并没有降低新存储器规范的重要性。像之前的DDR每次迭代一样,DDR5的主要重点再次是提高内存密度和速度。JEDEC希望将两者都提高一倍,最大内存速度设置为至少6.4Gbps,而单个封装的LRDIMM的容量最终将达到2TB。一直以来,存在一些较小的更改以支持这些目标或简化生态系统的某些方面,例如,DIMM上的电压调节器以及芯片上的ECC。变得更大:更密的内存和芯片堆叠我们首先简要介绍一下容量和密度,因为与DDR4相比,这是对标准最直接的更改。DDR5的设计时间跨度为数年,它将允许单个存储芯片达到64Gbit的密度,这比DDR4的最大16Gbit密度高出4倍。结合die堆叠,可以将多达8个管芯die为一个芯片,那么40个单元的LRDIMM可以达到2TB的有效存储容量。或者对于更不起眼的无缓冲DIMM,这意味着我们最终将看到典型双列配置的DIMM容量达到128GB。当然,当芯片制造赶上规范允许的范围时,DDR5规范的峰值容量将用于该标准生命周期的后期。首先,内存制造商将使用当今可达到的密度8Gbit和16Gbit芯片来构建其DIMM。因此,虽然DDR5的速度提升将是相当立即的,但是随着制造密度的提高,容量的提升将更加缓慢。更快:一个DIMM,两个通道DDR5的另一部分是关于再次增加内存带宽。每个人都希望获得更高的...
  • 点击次数: 7
    2020 - 06 - 30
    新兴的非易失性存储器(eNVM)在CMOS的基础上,拓展了应用范围。在几种选择中,相变存储器,自旋转移转矩随机存取存储器(STT-RAM)、电阻式随机存取存储器(RRAM),以及英特尔的Optane等是主要的新兴存储技术。尽管有COVID-19疫情影响,还有贸易争端,再有,英特尔的Optane DIMM延迟,以及许多其它负面影响因素,但新兴的存储市场仍将在未来十年中显着增长。由Objective Analysis和Coughlin Associates联合发布的最新报告“新兴存储找到了方向”表明,新兴存储技术正在迅速发展,到2030年的总收入将达到360亿美元。这是由两种动力驱动的:首先是当今领先的嵌入式存储技术SRAM和NOR闪存无法有效扩展到28nm以上,因此将被嵌入式磁阻RAM(MRAM)或其他技术取代;第二个因素是采用了英特尔的Optane DIMM,正式称为“ Optane DC持久存储模块”,它有望抢占服务器DRAM市场的大量份额。美光和英特尔推出了3D XPoint存储技术,其使用了一种相变技术,具有很高的耐用性,性能比NAND好得多,尽管它比DRAM慢一些,但密度比DRAM高。这些优点正在影响市场对传统DRAM的需求。英特尔于2017年推出了采用Optane技术(基于3D XPoint)的NVM SSD,并于2019年开始销售Optane DIMM模块。另外,磁性RAM(MRAM)和自旋隧道扭矩RAM(STT MRAM)开始取代NOR、SRAM以及部分DRAM。STT MRAM和MRAM的发展速度将促使其价格逐渐降低,并且假定其容量增加以降低生产成本(假设其容量增加,从而以高速和高耐久性的非易失性存储器替代易失性存储器,这些技术将具有很强的竞争力)。铁电RAM(FRAM)和某些RRAM技术具有某些利基应用,并且随着HfO FRAM的使用,可用于FRAM的利基...
  • 点击次数: 8
    2020 - 06 - 29
    【2020年6月28日 - 中国上海讯】全球电子技术领域的领先媒体集团 ASPENCORE今天在上海龙之梦万丽酒店隆重举办 “ 2020中国IC领袖峰会暨中国IC设计成就奖颁奖典礼”。本届峰会以“中国IC的‘危’与‘机’” 为主题,特邀中国半导体产业界最受瞩目的本土IC领袖,共话全球变局下中国IC设计产业面临的挑战与机遇,并与现场数百位资深设计工程师、管理精英和技术决策者共同探讨“中国芯”的突破和未来成长之道。同时,本届峰会还特别安排了实时全球视频直播。“自从2002年以来,我们已连续举办了18届中国IC领袖峰会。不忘初心,我们始终致力于推动中国半导体行业的发展,并借此表彰在2019年取得了突出成就的公司、团队和个人。”ASPENCORE亚太区总经理和总分析师张毓波表示。“我们清晰地意识到,在中美科技冷战和全球新冠疫情的大变局下,中国半导体产业的发展面临诸多挑战。然而,对很多中国本土IC设计公司来说,这些挑战的背后也预示着前所未有的机会。获得中国IC设计成就奖的企业、团队和个人都是成功掌控发展机遇和挑战的姣姣者,我向他们表示祝贺,并期望更多的本土IC设计公司脱颖而出,让中国半导体产业的发展更加健康且丰富多彩。”十八年来,通过对逾百万电子行业专业人士社群的持续调查,‘中国IC设计成就奖’一路伴随和见证了中国IC产业的成长与发展,是中国电子和半导体业界最受关注的技术奖项之一。本届颁奖典礼共颁发了四大类别的76个奖项,表彰引领技术创新、推动行业发展的企业、团队、管理者和产品。通过电子工程师、资深分析师和半导体业内人士公平、公正的投票评选产生,奖项及获奖者代表着行业的最高水准。此外,本届颁奖典礼还为入选EETimes Silicon 100榜单的中国IC设计公司颁发了奖杯。获奖公司、产品代表及个人合影2020中国 IC 设计成就奖获奖名单揭晓“2020年度中国 IC 设计成就奖”的...
  • 点击次数: 14
    2020 - 05 - 28
    半导体设备市场,处于整个半导体产业链的上游。无论是IDM,Fabless,还是Foundry,芯片元器件都要通过工厂制造才能体现出其现实价值和市场需求情况,而无论是制造,还是封测,都必须依赖相应的半导体设备。因此,半导体设备市场的出货和销售额,能够很客观地反映出芯片元器件市场的景气程度,泡沫较少,具有很高的参考价值。而从刚刚过去的4月份来看,以日本和美国为代表的全球半导体设备出货量都很乐观,总体来看,延续着2019 下半年以来的复苏势头。据日本半导体制造装置协会(SEAJ)初步统计,今年4月,日本半导体设备销售额较去年同期大增16.4%,连续第5个月增长,创17个月来最大增幅、销售额创19个月来(2018年9月以来)新高。2020年1-4月间,日本半导体设备累计销售额较去年同期增长9.6%。SEAJ在今年1月公布的预测报告指出,因期待存储器厂商的投资将回温,预估2020年度(2020年4月-2021年3月)日制半导体设备销售额将年增8.0%,至2兆2,311亿日元、优于前次(2019年7月)预估的2兆2,079亿日元;2021年度有望重回两位数增长,预估将年增12.0%,至2兆4,988亿日元、优于前次预估的2兆3,712亿日元。2018年度-2021年度的年均复合成长率(CAGR)预估为3.6%、高于前次预估的1.8%。可见,进入2020年以来,日本的半导体设备出货非常喜人,且看上去全年无忧。与此同时,另一大半导体设备出货地区——美国的情况也类似。据SEMI统计,4月份北美半导体设备制造商总营收为22.6亿美元,比3月份的22.1亿美元增长2.2%,比2019年4月的19.3亿美元增长17.2%。这已经是美国市场连续7个月保持在20亿美元之上。SEMI此前公布的数据显示,今年前两个月北美半导体设备制造商的销售额分别为23.4亿美元和23.7亿美元,前3个月的同比...
  • 点击次数: 29
    2020 - 05 - 27
    近期,因为美国利用长臂管理原则,对华为及海思的进一步制裁,引发了国内对芯片产业广泛关注。不少媒体对此进行广泛报道,行业人士也进行多方面解读,提出我国半导体要注重发展的几个方向:高端设计、EDA工具、先进制造工艺、核心光刻设备、半导体材料等,从上述几个方面对国内半导体行业发展出谋划策,热闹非凡。笔者在半导体行业从业多年,认为上述措施仅能解决国内芯片产业发展的短期硬环境,其实国内真正要高度重视的是长期软环境:人才环境、知识产权保护及长期的专注精神。 人才环境半导体行业是技术高度密集行业,需要大量的高端人才支撑。人才一方面是靠国外引进,一方面靠国内培养。与其他行业不同的是,半导体行业需要大量具有行业经验的资深技术、市场及运营人才,由于国内半导体行业真正市场化运作的时间并不长(第一家真正市场化运作的集成电路公司应该是1996年在上海设立的泰鼎微电子),大量人才还必须依靠从海外回来的资深专家,从近期上市或有影响力的集成电路相关企业领导人来看,如:武平(武岳峰)、陈大同(元禾璞华)、张鹏飞(上海博通)、张瑞安(乐鑫)、杨崇和(澜起)、尹志尧(中微)、戴伟民(芯原)、许志翰(卓胜)、陈南翔(华润)、赵立新(格科)、盛文军(泰凌)、李宝骐(磐启)等均是杰出的海外回国人才,他们对推动国内集成电路发展起到至关重要的作用,是国内半导体行业发展真正的推动者。国内半导体产业的发展任重道远,一旦中美完全脱钩,人才断流,对国内芯片产业向更高、更强的产业链顶端发展所起的负面影响是非常深远的,需要引起有关部门高度重视。 知识产权保护集成电路在半导体硅片上生产过程本质上属于一种图形刻蚀过程,通过一些特殊工具可以将硅片上所刻蚀的图片反向提取出来,如果已知原有工艺生产信息,则可以在相同的工艺上,将反向提取的图形重新进行刻蚀,从而制造出与原来芯片几乎相同的产品,这就是所谓的“抄片”,如果将上述产...
联系我们 关于我们 / contact us
重庆市南岸区南坪西路63号 中关村创客天下 二栋A207
023-62910096 或 023-62910596
86 0755-2788 8009
icipa@infoip.org
国家电子信息产业知识产权创新平台的建设依托工信部和国家工业信息安全发展研究中心的支持, 凭借北京纲正知识产权中心有限公司的专业技术和行业资源,努力打造成国家级知识产权综合性平台。该平台搭建完成后有助于知识产权改革与治理体系现代化,加速科研与技术创新、技术与资本有效对接、 创新成果与产业合理布局,服务“十三五”时期知识产权战略,推动我国知识产权强国建设。
Copyright ©2017 - 2018 国家电子信息产业知识产权创新平台西部分平台 京ICP备18044172号